Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur Heart J Suppl ; 24(Suppl C): C243-C247, 2022 May.
Article in English | MEDLINE | ID: covidwho-1948255

ABSTRACT

The rate of post-vaccine myocarditis is being studied from the beginning of the massive vaccination campaign against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a direct cause-effect relationship has been described, in most cases, the vaccine pathophysiological role is doubtful. Moreover, it is not quite as clear as having had a previous myocarditis could be a risk factor for a post-vaccine disease relapse. A 27-year-old man presented to the emergency department for palpitations and pericardial chest pain radiated to the upper left limb, on the 4th day after the third dose of BNT162b2 vaccine. He experienced a previous myocarditis 3 years before, with full recovery and no other comorbidities. Electrocardiogram showed normal atrioventricular conduction, incomplete right bundle branch block, and diffuse ST-segment elevation. A cardiac echo showed lateral wall hypokinesis with preserved ejection fraction. Troponin-T was elevated (160 ng/L), chest X-ray was normal, and the SARS-CoV-2 molecular buffer was negative. High-dose anti-inflammatory therapy with ibuprofen and colchicine was started; in the 3rd day high-sensitivity Troponin I reached a peak of 23000 ng/L. No heart failure or arrhythmias were observed. A cardiac magnetic resonance was performed showing normal biventricular systolic function and abnormal tissue characterization suggestive for acute non-ischaemic myocardial injury (increased native T1 and T2 values, increased signal intensity at T2-weighted images and late gadolinium enhancement, all findings with matched subepicardial distribution) at the level of mid to apical septal, anterior, and anterolateral walls. A left ventricular electroanatomic voltage mapping was negative (both unipolar and bipolar), while the endomyocardial biopsy showed a picture consistent with active myocarditis. The patient was discharged in good clinical condition, on bisoprolol 1.25 mg, ramipril 2.5 mg, ibuprofen 600 mg three times a day, colchicine 0.5 mg twice a day. We presented the case of a young man with history of previous myocarditis, admitted with a non-complicated acute myopericarditis relapse occurred 4 days after SARS-CoV-2 vaccination (3rd dose). Despite the observed very low incidence of cardiac complications following BNT162b2 administration, and the lack of a clear proof of a direct cause-effect relationship, we think that in our patient this link can be more than likely. In the probable need for additional SARS-CoV-2 vaccine doses in the next future, studies addressing the risk-benefit balance of this subset of patient are warranted. We described a multidisciplinary management of a case of myocarditis recurrence after the third dose of SARS-CoV-2 BNT162b2 vaccine.

2.
Medicina (Kaunas) ; 57(4)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1241288

ABSTRACT

The prediction and prevention of sudden cardiac death is the philosopher's stone of clinical cardiac electrophysiology. Sports can act as triggers of fatal arrhythmias and therefore it is essential to promptly frame the athlete at risk and to carefully evaluate the suitability for both competitive and recreational sports activity. A history of syncope or palpitations, the presence of premature ventricular complexes or more complex arrhythmias, a reduced left ventricular systolic function, or the presence of known or familiar heart disease should prompt a thorough evaluation with second level examinations. In this regard, cardiac magnetic resonance and electrophysiological study play important roles in the diagnostic work-up. The role of genetics is increasing both in cardiomyopathies and in channelopathies, and a careful evaluation must be focused on genotype positive/phenotype negative subjects. In addition to being a trigger for fatal arrhythmias in certain cardiomyopathies, sports also play a role in the progression of the disease itself, especially in the case arrhythmogenic right ventricular cardiomyopathy. In this paper, we review the latest European guidelines on sport cardiology in patients with cardiovascular diseases, focusing on arrhythmic risk stratification and the management of cardiomyopathies and channelopathies.


Subject(s)
Cardiology , Cardiomyopathies , Cardiovascular Diseases , Channelopathies , Sports , Cardiomyopathies/complications , Channelopathies/complications , Channelopathies/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL